Module I: Laplace Transform

1. Definition of Laplace Transform

Definition
Let \( f(t) \) be a function defined for \( t \geq 0 \). The Laplace Transform of \( f(t) \) is:
\[ \mathcal{L}\{f(t)\} = F(s) = \int_0^{\infty} e^{-st} f(t) \, dt \]

Where \( s \) is a complex number \( s = \sigma + i\omega \)

Find \( \mathcal{L}\{1\} \)
\( \mathcal{L}\{1\} = \frac{1}{s} \)

2. Conditions of Existence

Sufficient Conditions for Laplace Transform to Exist
  1. \( f(t) \) is piecewise continuous on every finite interval \([0, T]\)
  2. \( f(t) \) is of exponential order: \( |f(t)| \leq Me^{at} \) for constants \( M, a \) and large \( t \)
If these conditions are satisfied, \( \mathcal{L}\{f(t)\} \) exists for \( s > a \)

3. Laplace Transform of Standard Functions

\( f(t) \) \( \mathcal{L}\{f(t)\} = F(s) \) Condition
\( 1 \) \( \frac{1}{s} \) \( s > 0 \)
\( e^{at} \) \( \frac{1}{s-a} \) \( s > a \)
\( t^n \) (n ≥ 0, integer) \( \frac{n!}{s^{n+1}} \) \( s > 0 \)
\( \sin(at) \) \( \frac{a}{s^2 + a^2} \) \( s > 0 \)
\( \cos(at) \) \( \frac{s}{s^2 + a^2} \) \( s > 0 \)
\( \sinh(at) \) \( \frac{a}{s^2 - a^2} \) \( s > |a| \)
\( \cosh(at) \) \( \frac{s}{s^2 - a^2} \) \( s > |a| \)

Derivation of \( \mathcal{L}\{e^{at}\} \)

Find \( \mathcal{L}\{e^{at}\} \)
\( \mathcal{L}\{e^{at}\} = \frac{1}{s-a} \)

Derivation of \( \mathcal{L}\{\sin(at)\} \)

Find \( \mathcal{L}\{\sin(at)\} \)
\( \mathcal{L}\{\sin(at)\} = \frac{a}{s^2 + a^2} \)

Derivation of \( \mathcal{L}\{t^n\} \)

Find \( \mathcal{L}\{t^n\} \) for n = positive integer
\( \mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \)

4. Properties of Laplace Transform

4.1 Linearity Property

\[ \mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\} \]
Find \( \mathcal{L}\{3e^{2t} + 5\sin(4t)\} \)
\( = \frac{3}{s-2} + \frac{20}{s^2+16} \)

4.2 First Shifting Theorem

If \( \mathcal{L}\{f(t)\} = F(s) \), then \( \mathcal{L}\{e^{at}f(t)\} = F(s-a) \)
Replace every \( s \) with \( (s-a) \) in \( F(s) \)
Find \( \mathcal{L}\{e^{3t}\sin(2t)\} \)
\( \mathcal{L}\{e^{3t}\sin(2t)\} = \frac{2}{(s-3)^2+4} \)
Find \( \mathcal{L}\{e^{-2t}t^3\} \)
\( \mathcal{L}\{e^{-2t}t^3\} = \frac{6}{(s+2)^4} \)

4.3 Change of Scale Property

If \( \mathcal{L}\{f(t)\} = F(s) \), then \( \mathcal{L}\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right) \)
Find \( \mathcal{L}\{\sin(3t)\} \) using change of scale, given \( \mathcal{L}\{\sin(t)\} = \frac{1}{s^2+1} \)
\( \mathcal{L}\{\sin(3t)\} = \frac{3}{s^2+9} \)

4.4 Multiplication by t

\[ \mathcal{L}\{t \cdot f(t)\} = -\frac{d}{ds}F(s) \]

In general: \( \mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n}F(s) \)

Find \( \mathcal{L}\{t \cdot \sin(2t)\} \)
\( \mathcal{L}\{t\sin(2t)\} = \frac{4s}{(s^2+4)^2} \)
Find \( \mathcal{L}\{t^2 e^{3t}\} \)
\( \mathcal{L}\{t^2 e^{3t}\} = \frac{2}{(s-3)^3} \)

4.5 Division by t

\[ \mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_s^{\infty} F(u) \, du \]
Condition
\( \lim_{t \to 0} \frac{f(t)}{t} \) must exist
Find \( \mathcal{L}\left\{\frac{\sin(t)}{t}\right\} \)
\( \mathcal{L}\left\{\frac{\sin(t)}{t}\right\} = \cot^{-1}(s) = \tan^{-1}\left(\frac{1}{s}\right) \)
Find \( \mathcal{L}\left\{\frac{e^{at} - e^{bt}}{t}\right\} \)
\( \mathcal{L}\left\{\frac{e^{at} - e^{bt}}{t}\right\} = \ln\frac{s-b}{s-a} \)

5. Laplace Transform of Derivatives

\[ \mathcal{L}\{f'(t)\} = sF(s) - f(0) \] \[ \mathcal{L}\{f''(t)\} = s^2F(s) - sf(0) - f'(0) \]
Find \( \mathcal{L}\{\cos(at)\} \) using derivative property
\( \mathcal{L}\{\cos(at)\} = \frac{s}{s^2+a^2} \)

6. Laplace Transform of Integrals

\[ \mathcal{L}\left\{\int_0^t f(u) \, du\right\} = \frac{F(s)}{s} \]
Find \( \mathcal{L}\left\{\int_0^t e^{2u} \, du\right\} \)
\( \mathcal{L}\left\{\int_0^t e^{2u} \, du\right\} = \frac{1}{s(s-2)} \)

7. Evaluation of Real Integrals using Laplace Transform

Key Technique
Use \( \int_0^{\infty} e^{-st}f(t)\,dt = F(s) \), then substitute specific value of \( s \)
Evaluate \( \int_0^{\infty} te^{-3t}\sin(2t) \, dt \)
\( \int_0^{\infty} te^{-3t}\sin(2t) \, dt = \frac{12}{169} \)
Evaluate \( \int_0^{\infty} \frac{\sin(t)}{t} \, dt \)
\( \int_0^{\infty} \frac{\sin(t)}{t} \, dt = \frac{\pi}{2} \)
Evaluate \( \int_0^{\infty} e^{-t}\frac{1 - \cos(t)}{t} \, dt \)
\( \int_0^{\infty} e^{-t}\frac{1 - \cos(t)}{t} \, dt = \frac{1}{2}\ln 2 \)

Quick Reference: All Formulas

Property/Transform Formula
Definition \( \mathcal{L}\{f(t)\} = \int_0^{\infty} e^{-st}f(t)\,dt \)
Linearity \( \mathcal{L}\{af + bg\} = a\mathcal{L}\{f\} + b\mathcal{L}\{g\} \)
First Shifting \( \mathcal{L}\{e^{at}f(t)\} = F(s-a) \)
Change of Scale \( \mathcal{L}\{f(at)\} = \frac{1}{a}F(s/a) \)
Multiplication by t \( \mathcal{L}\{tf(t)\} = -\frac{d}{ds}F(s) \)
Division by t \( \mathcal{L}\{f(t)/t\} = \int_s^{\infty}F(u)\,du \)
Derivative \( \mathcal{L}\{f'(t)\} = sF(s) - f(0) \)
Second Derivative \( \mathcal{L}\{f''(t)\} = s^2F(s) - sf(0) - f'(0) \)
Integral \( \mathcal{L}\{\int_0^t f(u)du\} = F(s)/s \)