Module II: Inverse Laplace Transform

1. Inverse Laplace Transform

Definition
If \( \mathcal{L}\{f(t)\} = F(s) \), then \( f(t) \) is called the Inverse Laplace Transform of \( F(s) \)
\[ f(t) = \mathcal{L}^{-1}\{F(s)\} \]

2. Linearity Property

\[ \mathcal{L}^{-1}\{aF(s) + bG(s)\} = a\mathcal{L}^{-1}\{F(s)\} + b\mathcal{L}^{-1}\{G(s)\} \]
Find \( \mathcal{L}^{-1}\left\{\frac{3}{s^2+4} + \frac{5}{s-2}\right\} \)
\( = \frac{3}{2}\sin(2t) + 5e^{2t} \)

3. Standard Inverse Laplace Transform Formulae

\( F(s) \) \( \mathcal{L}^{-1}\{F(s)\} = f(t) \)
\( \frac{1}{s} \) \( 1 \)
\( \frac{1}{s^n} \) \( \frac{t^{n-1}}{(n-1)!} \)
\( \frac{1}{s-a} \) \( e^{at} \)
\( \frac{1}{(s-a)^n} \) \( \frac{t^{n-1}e^{at}}{(n-1)!} \)
\( \frac{a}{s^2+a^2} \) \( \sin(at) \)
\( \frac{s}{s^2+a^2} \) \( \cos(at) \)
\( \frac{a}{s^2-a^2} \) \( \sinh(at) \)
\( \frac{s}{s^2-a^2} \) \( \cosh(at) \)
\( \frac{a}{(s-b)^2+a^2} \) \( e^{bt}\sin(at) \)
\( \frac{s-b}{(s-b)^2+a^2} \) \( e^{bt}\cos(at) \)
Find \( \mathcal{L}^{-1}\left\{\frac{s+3}{(s+3)^2+16}\right\} \)
\( = e^{-3t}\cos(4t) \)

4. Inverse Laplace Transform using Derivatives

If \( \mathcal{L}^{-1}\{F(s)\} = f(t) \), then \( \mathcal{L}^{-1}\{F'(s)\} = -t \cdot f(t) \)

In general: \( \mathcal{L}^{-1}\{F^{(n)}(s)\} = (-t)^n f(t) \)

When to use: When \( F(s) \) can be written as derivative of a simpler function
Find \( \mathcal{L}^{-1}\left\{\frac{2s}{(s^2+4)^2}\right\} \)
\( = \frac{t\sin(2t)}{2} \)
Find \( \mathcal{L}^{-1}\left\{\ln\frac{s+1}{s-1}\right\} \)
\( \mathcal{L}^{-1}\left\{\ln\frac{s+1}{s-1}\right\} = \frac{2\sinh(t)}{t} \)

5. Partial Fractions Method

Method Overview
Decompose rational function \( F(s) \) into simpler fractions, then find inverse of each

Case 1: Distinct Linear Factors

\[ \frac{P(s)}{(s-a)(s-b)(s-c)} = \frac{A}{s-a} + \frac{B}{s-b} + \frac{C}{s-c} \]
Find \( \mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\} \)
\( = e^{2t} - e^t \)

Case 2: Repeated Linear Factors

\[ \frac{P(s)}{(s-a)^3} = \frac{A}{s-a} + \frac{B}{(s-a)^2} + \frac{C}{(s-a)^3} \]
Find \( \mathcal{L}^{-1}\left\{\frac{s}{(s+1)^3}\right\} \)
\( = te^{-t} - \frac{t^2e^{-t}}{2} = e^{-t}\left(t - \frac{t^2}{2}\right) \)

Case 3: Quadratic Factors

\[ \frac{P(s)}{(s-a)(s^2+b^2)} = \frac{A}{s-a} + \frac{Bs+C}{s^2+b^2} \]
Find \( \mathcal{L}^{-1}\left\{\frac{1}{s(s^2+4)}\right\} \)
\( = \frac{1}{4}(1 - \cos(2t)) \)

6. Convolution Theorem

Convolution Definition
The convolution of \( f(t) \) and \( g(t) \) is defined as: \[ (f * g)(t) = \int_0^t f(u) \cdot g(t-u) \, du \]
\[ \mathcal{L}^{-1}\{F(s) \cdot G(s)\} = f(t) * g(t) = \int_0^t f(u) \cdot g(t-u) \, du \]
When to use: When \( F(s) \) is a product of two functions whose inverses are known
Find \( \mathcal{L}^{-1}\left\{\frac{1}{s(s-1)}\right\} \) using convolution
\( \mathcal{L}^{-1}\left\{\frac{1}{s(s-1)}\right\} = e^t - 1 \)
Find \( \mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\} \) using convolution
\( \mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\} = \frac{\sin(t) - t\cos(t)}{2} \)

7. Solving Differential Equations using Laplace Transform

Take L.T. of ODE
Solve for Y(s)
Find \( \mathcal{L}^{-1}\{Y(s)\} \)
Solution y(t)
Key Formulas for ODEs

\( \mathcal{L}\{y'\} = sY(s) - y(0) \)

\( \mathcal{L}\{y''\} = s^2Y(s) - sy(0) - y'(0) \)

First Order ODE

Solve \( y' + 2y = e^{-t} \), given \( y(0) = 1 \)
\( y(t) = e^{-t} \)

Second Order ODE

Solve \( y'' + 4y = 0 \), given \( y(0) = 0, y'(0) = 2 \)
\( y(t) = \sin(2t) \)
Solve \( y'' - 3y' + 2y = e^{3t} \), given \( y(0) = 0, y'(0) = 0 \)
\( y(t) = \frac{1}{2}e^t - e^{2t} + \frac{1}{2}e^{3t} \)
Solve \( y'' + y = \sin(t) \), given \( y(0) = 1, y'(0) = 0 \)
\( y(t) = \cos(t) + \frac{\sin(t) - t\cos(t)}{2} = \frac{2\cos(t) + \sin(t) - t\cos(t)}{2} \)

Quick Reference: All Formulas

Method Formula/Technique
Linearity \( \mathcal{L}^{-1}\{aF + bG\} = a\mathcal{L}^{-1}\{F\} + b\mathcal{L}^{-1}\{G\} \)
First Shifting \( \mathcal{L}^{-1}\{F(s-a)\} = e^{at}f(t) \)
Derivative Method \( \mathcal{L}^{-1}\{F'(s)\} = -tf(t) \)
Convolution \( \mathcal{L}^{-1}\{F \cdot G\} = \int_0^t f(u)g(t-u)du \)
For ODE: \( y' \) \( \mathcal{L}\{y'\} = sY(s) - y(0) \)
For ODE: \( y'' \) \( \mathcal{L}\{y''\} = s^2Y - sy(0) - y'(0) \)