Module III: Fourier Series

1. Dirichlet's Conditions

Conditions for Fourier Series to Exist
A function \( f(x) \) can be represented by a Fourier series if:
  1. \( f(x) \) is single-valued and periodic
  2. \( f(x) \) has a finite number of discontinuities in one period
  3. \( f(x) \) has a finite number of maxima and minima in one period
  4. \( \int |f(x)| \, dx \) over one period is finite (absolutely integrable)
At a point of discontinuity, Fourier series converges to \( \frac{f(x^+) + f(x^-)}{2} \)

2. Definition of Fourier Series

Period 2π

\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(nx) + b_n \sin(nx) \right] \]
Euler's Formulae (Period 2π): \[ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx \] \[ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx \] \[ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx \]

Period 2l

\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\frac{n\pi x}{l} + b_n \sin\frac{n\pi x}{l} \right] \]
Euler's Formulae (Period 2l): \[ a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx \] \[ a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\frac{n\pi x}{l} \, dx \] \[ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\frac{n\pi x}{l} \, dx \]

3. Parseval's Identity

Period 2π: \[ \frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \]
Period 2l: \[ \frac{1}{l} \int_{-l}^{l} [f(x)]^2 \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \]
Parseval's Identity is used to find the sum of certain infinite series

4. Fourier Series of Period 2π Functions

Find Fourier series of \( f(x) = x \) in \( (-\pi, \pi) \)
\[ f(x) = x = 2\left[ \frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots \right] \]
Find Fourier series of \( f(x) = x^2 \) in \( (-\pi, \pi) \)
\[ f(x) = x^2 = \frac{\pi^2}{3} + 4\left[ -\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} - \frac{\cos 3x}{3^2} + \cdots \right] \]

5. Fourier Series of Period 2l Functions

Find Fourier series of \( f(x) = x \) in \( (-2, 2) \)
\[ f(x) = \frac{4}{\pi}\left[ \sin\frac{\pi x}{2} - \frac{1}{2}\sin\frac{2\pi x}{2} + \frac{1}{3}\sin\frac{3\pi x}{2} - \cdots \right] \]

6. Fourier Series of Even and Odd Functions

Property Even Function: \( f(-x) = f(x) \) Odd Function: \( f(-x) = -f(x) \)
\( a_0 \) \( \frac{2}{\pi} \int_0^{\pi} f(x) \, dx \) \( 0 \)
\( a_n \) \( \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) \, dx \) \( 0 \)
\( b_n \) \( 0 \) \( \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) \, dx \)
Series has Only cosine terms Only sine terms
Find Fourier series of \( f(x) = |x| \) in \( (-\pi, \pi) \)
\[ |x| = \frac{\pi}{2} - \frac{4}{\pi}\left[ \frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right] \]

7. Half Range Fourier Series

When to Use
When \( f(x) \) is defined only in \( (0, l) \) or \( (0, \pi) \), we extend it as even or odd to get full period

Half Range Cosine Series (Even Extension)

In \( (0, \pi) \): \[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) \] \[ a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx, \quad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) \, dx \]
In \( (0, l) \): \[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\frac{n\pi x}{l} \] \[ a_0 = \frac{2}{l} \int_0^{l} f(x) \, dx, \quad a_n = \frac{2}{l} \int_0^{l} f(x) \cos\frac{n\pi x}{l} \, dx \]
Find half range cosine series of \( f(x) = x \) in \( (0, \pi) \)
\[ x = \frac{\pi}{2} - \frac{4}{\pi}\left[ \cos x + \frac{\cos 3x}{9} + \frac{\cos 5x}{25} + \cdots \right] \quad (0 < x < \pi) \]

Half Range Sine Series (Odd Extension)

In \( (0, \pi) \): \[ f(x) = \sum_{n=1}^{\infty} b_n \sin(nx) \] \[ b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) \, dx \]
In \( (0, l) \): \[ f(x) = \sum_{n=1}^{\infty} b_n \sin\frac{n\pi x}{l} \] \[ b_n = \frac{2}{l} \int_0^{l} f(x) \sin\frac{n\pi x}{l} \, dx \]
Find half range sine series of \( f(x) = x \) in \( (0, \pi) \)
\[ x = 2\left[ \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \cdots \right] \quad (0 < x < \pi) \]
Find half range sine series of \( f(x) = 1 \) in \( (0, 2) \)
\[ 1 = \frac{4}{\pi}\left[ \sin\frac{\pi x}{2} + \frac{1}{3}\sin\frac{3\pi x}{2} + \frac{1}{5}\sin\frac{5\pi x}{2} + \cdots \right] \quad (0 < x < 2) \]

Quick Reference: All Formulas

Type Formula
Period 2π Series \( f(x) = \frac{a_0}{2} + \sum (a_n\cos nx + b_n\sin nx) \)
Period 2l Series \( f(x) = \frac{a_0}{2} + \sum \left(a_n\cos\frac{n\pi x}{l} + b_n\sin\frac{n\pi x}{l}\right) \)
Parseval (2π) \( \frac{1}{\pi}\int_{-\pi}^{\pi}[f(x)]^2dx = \frac{a_0^2}{2} + \sum(a_n^2 + b_n^2) \)
Even function \( b_n = 0 \), use \( \frac{2}{\pi}\int_0^{\pi} \)
Odd function \( a_0 = a_n = 0 \), use \( \frac{2}{\pi}\int_0^{\pi} \)
Half Range Cosine \( f(x) = \frac{a_0}{2} + \sum a_n\cos\frac{n\pi x}{l} \)
Half Range Sine \( f(x) = \sum b_n\sin\frac{n\pi x}{l} \)